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for an additional source of unpaired spin density at the heme 
periphery, namely the cation radical. Current studies in our 
laboratory on isotope labeling of the heme are expected to 
provide a more definitive characterization of the second oxi­
dizing equivalent in HRP-I. 
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Effect of A( ,'3) Strain on the Stereochemical Course of 
N-Acyliminium Ion Cyclizations 

Sir: 

yV-Acyliminium ion initiated olefin cyclizations have been 
documented as a potent tool in alkaloid synthesis.1 Although 
a number of stereochemical features of these reactions have 
been delineated,2 the effect of asymmetric centers on their 
stereochemical course has received little attention.3 Herein are 
reported results encountered during the course of studies di­
rected toward a synthesis of the Dendrobatid alkaloid ge-
phyrotoxin (Scheme I)4 which illustrate that chiral centers can 
exert profound influence over the stereochemistry of such cy­
clizations. 

Treatment of ?/w!.?-2-vinylcyclohexanol ( I ) 5 with diethyl 
azodicarboxylate in the presence of triphenylphosphine and 
succinimide6 gave imide 2 (mp 63-66 0C; 50%). Reduction of 
2 with diisobutylaluminum hydride7 afforded carbinolamide 

3 as a mixture of diastereomers (mp 93-108 0 C; 57%). 
Treatment of 3 with formic acid (25 0C; 30 min) gave an 85% 
yield of tricyclic lactam 4 (mp 100-102 0 C). The stereo­
chemical assignment for 4 followed from the coupling pattern 
of the C-5 proton, which appeared as a triplet of doublets {J 
= 11, 11, 4 Hz) at <5 5.36 (CDCl3).8 Of the four possible cis-
decahydroquinolines which could have resulted from the A'-
acyliminium ion cyclization, only 4 can adopt a conformation 
in which the C-5 proton affords two anti and one gauche cou­
pling to protons at C-4 and C-5a.9 

Two factors may be responsible for the stereoselective 
conversion of 3 into 4. The cyclization of 3 most likely proceeds 
through an A'-acyliminium ion which can adopt chair-chair 
conformations 5 and 6 (Scheme II). 1H NMR analysis indi­
cates that imide 2 adopts a chair conformation in which the 
vinyl group occupies an axial site ( / a b = 4, Jbc = 12, Jbd = 4 
Hz). This suggests that 5 represents the most stable confor­
mation of the A'-acyliminium ion. In addition to the ground-
state energy difference between the conformations leading to 
4 and its C-3a,5 isomer 7, it is probable that the £ a c t for con­
version of 6 into 7 is greater than that for conversion of 5 into 
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4 owing to the development of a severe A(1'3) interaction in 
7_io,i i 

To evaluate the effect of A(1'3' strain on the stereochemical 
course of /V-acyliminium ion cyclizations in a conformational^ 
nonbiased system, carbinolamides 10 and 11 were prepared 
as outlined in Scheme III.12 Treatment of 10 and 11 with 
formic acid (25 0C, 8-10 min) gave quinolizidinones 12 (mp 
135-137 0C) and 13 (mp 72-74 0C) in 63 and 71% yields, 
respectively. Only small amounts (2-5%) of substances 
stereoisomeric to 12 and 13 were formed in these cyclizations. 
The stereochemistry of 12 was established by conversion into 
quinolizidine 1413 (LiAlH4, mp 97-99 0C; 72%) and subse­
quent oxidation to known quinolizidinone 1514 (Jones reagent, 
70%). The stereochemical assignment for 13 was based on 
spectral data gathered on the dihydro derivative 16 (H2, Pd/C; 
mp 73-75 0C; 95%), aminoacetate 17, and 13 itself.15 These 
results suggest that the N-acyliminium ions derived from 10 
and 11 cyclize via chair conformations in which the incipient 
C-4 substituent occupies an axial site (Scheme IV), in contrast 
to the equatorial orientation of substituents usually observed UU 
in olefin cyclizations and other reactions whose transition-state 
geometries resemble chair cyclohexane.17~19 This unusual 
observation can be attributed to the unfavorable development 
of A(1,3) strain in the transition states leading to C-4 isomers 
of 12 and 13. 

The results presented here indicate that A(1-3) strain is an 
important consideration in predicting the stereochemical 
course of certain /V-acyliminium ion cyclizations. This and 
other applications of the A(l'3) strain concept to stereochemical 
problems in alkaloid synthesis are being explored in these 
laboratories.20 
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Stabilities of Carbonium Ions in Solution. 10. 
A Thermochemical Comparison of the Relative 
Stabilities of Long-Lived 2-Norbornyl and 
Butyl Cations in S02ClF/SbF5 

Sir: 

We report here a calorimetric determination of the heats of 
isomerization of the secondary 4-methyl-2-norbornyl cation 
to the tertiary 2-methyl-2-norbornyl ion in SC^GF/SbFs at 
low temperatures using methods described previously.'"3 When 
compared with the corresponding heat of isomerism of the 
sec-butyl to the tert-butyl cation under the same conditions, 
we find that the rearrangement of the norbornyl system is 
considerably less exothermic than is that of the acyclic system. 
We believe that this is the most compelling piece of evidence 
yet presented in support of the notion that the 2-norbornyl ion 
enjoys special thermodynamic stability relative to other simple 
secondary carbonium ions. This in turn confers added signif­
icance on the question of the ion's structure—i.e., whether or 
not it is bridged—for, if, as has been argued,4 the norbornyl 
ion has no special degree of stability relative to appropriate 
models, there is little reason to propose a special structural 
feature for it. 

The reason why the present experiment is particularly illu­
minating regarding the relative stabilities of the isomeric 
secondary and tertiary ions is that no neutral precursor mol­
ecules or radicals are involved in the comparison. We have 
emphasized recently3 that initial state contributions render 
equivocal all interpretations of ionic stabilities in terms of heats 
of ionization or rates of solvolysis. Very large (e.g., 10 kcal/ 
mol) initial state contributions can confuse comparisons of 
secondary vs. tertiary halides for such processes.5 Initial state 
contributions to the methylnorbornyl systems have also been 
discussed,6 and strain in 2-methyl-2-exo-norbornyl chloride 
has been shown to contribute ~2 kcal/mol to its heat of ion­
ization. 
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